My Quote My Quote

MICROSCOPES

Denver Scientic Analytical is one of leading manufacturers of optical and digital microscopes for educational and research institutions, medicine, science, and industry. We offer a range of systems from microscopes for training and routine tasks to advanced imaging systems used to solve some of the most challenging life science and industrial applications. Whether you need a microscope for education, Clinical Laboratory Test, research or industrial applications, you can quickly find specialized microscopes in our selection.

Our microscopes are used for most of the applications in Cancer Research, Cell Culture, Developmental Biology, Drug Discovery, Fluorescence, Live Cell Imaging, Molecular Cell Biology, Neuroscience Imaging, Regenerative Medicine, Pathology and Cytology applications.

We offer outstanding performance, thanks to their natural images and the ability to observe living tissue. Categorized into following categories to meet the requirement of different applications;

  • Educational Microscope
  • Multi-head Teaching Microscope
  • Clinical Microscope
  • Laboratory Microscope
  • Research Microscope
  • Digital Microscopes
  • Fluorescence Microscope
  • Inverted Microscope
  • Stereo Microscope
  • Polarizing Microscope
  • Metallurgical Microscope.

We build microscopes providing the performance and reliability, you can depend on in the long run. The solid construction and weight of the microscopes ensures stability even in harsh environments and the long-lasting precision engineering ensures quality work in the laboratory for many years to come.

Customer satisfaction is our top priority, which is why our staff are more than happy to make special customer requests a reality. All microscopes can be upgraded or converted, thus giving you the best quality at a good price, you can depend on!

Composite light microscopes consist of two lens systems: one eyepiece toward the eye and one toward the object-side objective. The objectives are the most important and valuable part of the microscope, because their quality is critical for determining the overall performance of the microscope. Achromatic objectives consist of compound lenses made of different materials. This makes it possible to correct longitudinal chromatic aberration for two colors, i.e. the varying focal points of several different wavelengths. Apochromatic objectives are corrected for three colors and the deviation of the image location for the intermediate colors is very small. Objectives that are used to correct the curvature of the image field are referred to as plane objectives.

The eyepiece acts as a magnifying glass and magnifies the intermediate image of the objective. Wide-field eyepieces have a larger field-of-vision number than normal eyepieces. The field-of-vision number is the diameter of the object field in mm multiplied by the magnification factor of the objective: an eyepiece with a field-of-vision of 18 mm with a 4x objective yields an object field with 4.5 mm. Plane eyepieces smooth out the image field similar to the plane objectives.

Modern light microscopes are basically categorized as monocular, binocular or stereo microscopes depending on the number of eyepieces and objectives. Monocular microscopes have one eyepiece and one objective and are the simplest type of microscopes. Binocular microscopes have two eyepieces and one objective. They provide for fatigue-free working as microscopes with one eyepiece. However, they do not allow for three-dimensional viewing of the object.

Stereo microscopes have two eyepieces and two objectives, which can, however, be combined to form a main objective and thus project a separate image of the object in each eye. This allows objects to be viewed three dimensionally.

In biology and medicine, the object is usually illuminated with transmitted light before the light passes through the objective. This is referred to as transmitted light microscopy. In incident light microscopy, the light is cast from above onto the object and is reflected back into the objective. Incident light microscopy is used for the microscopic examination of opaque objects.

The Köhler illumination makes it possible to illuminate precisely the object area that can be overlooked. This prevents unnecessary stray light from illuminated parts of the object that are not in the field of view.

Dark-field microscopy is used to examine objects that are particularly lacking in contrast such as micro-organisms or red blood cells. The dark-field feature directs the light at an oblique angle through the object, past the objective. The light that is refracted from the object hits the objective where a bright image is then produced against a dark background. This makes it possible to see outlines of objects that are normally mostly transparent.

Phase-contrast microscopy was developed for the microscopy of particularly transparent objects. Transparent objects are, for the most part, optically denser than the surrounding medium and therefore create more resistance to the light. The light is therefore slowed down, which results in a phase shift when it exits the object again. This phase shift is used to create a brightness contrast. This also requires a ring aperture in the condenser and a phase ring in the objective which must be calibrated to each other.

MICROSCOPES

Denver Scientic Analytical is one of leading manufacturers of optical and digital microscopes for educational and research institutions, medicine, science, and industry. We offer a range of systems from microscopes for training and routine tasks to advanced imaging systems used to solve some of the most challenging life science and industrial applications. Whether you need a microscope for education, Clinical Laboratory Test, research or industrial applications, you can quickly find specialized microscopes in our selection.

Our microscopes are used for most of the applications in Cancer Research, Cell Culture, Developmental Biology, Drug Discovery, Fluorescence, Live Cell Imaging, Molecular Cell Biology, Neuroscience Imaging, Regenerative Medicine, Pathology and Cytology applications.

We offer outstanding performance, thanks to their natural images and the ability to observe living tissue. Categorized into following categories to meet the requirement of different applications;

  • Educational Microscope
  • Multi-head Teaching Microscope
  • Clinical Microscope
  • Laboratory Microscope
  • Research Microscope
  • Digital Microscopes
  • Fluorescence Microscope
  • Inverted Microscope
  • Stereo Microscope
  • Polarizing Microscope
  • Metallurgical Microscope.

We build microscopes providing the performance and reliability, you can depend on in the long run. The solid construction and weight of the microscopes ensures stability even in harsh environments and the long-lasting precision engineering ensures quality work in the laboratory for many years to come.

Customer satisfaction is our top priority, which is why our staff are more than happy to make special customer requests a reality. All microscopes can be upgraded or converted, thus giving you the best quality at a good price, you can depend on!

Composite light microscopes consist of two lens systems: one eyepiece toward the eye and one toward the object-side objective. The objectives are the most important and valuable part of the microscope, because their quality is critical for determining the overall performance of the microscope. Achromatic objectives consist of compound lenses made of different materials. This makes it possible to correct longitudinal chromatic aberration for two colors, i.e. the varying focal points of several different wavelengths. Apochromatic objectives are corrected for three colors and the deviation of the image location for the intermediate colors is very small. Objectives that are used to correct the curvature of the image field are referred to as plane objectives.

The eyepiece acts as a magnifying glass and magnifies the intermediate image of the objective. Wide-field eyepieces have a larger field-of-vision number than normal eyepieces. The field-of-vision number is the diameter of the object field in mm multiplied by the magnification factor of the objective: an eyepiece with a field-of-vision of 18 mm with a 4x objective yields an object field with 4.5 mm. Plane eyepieces smooth out the image field similar to the plane objectives.

Modern light microscopes are basically categorized as monocular, binocular or stereo microscopes depending on the number of eyepieces and objectives. Monocular microscopes have one eyepiece and one objective and are the simplest type of microscopes. Binocular microscopes have two eyepieces and one objective. They provide for fatigue-free working as microscopes with one eyepiece. However, they do not allow for three-dimensional viewing of the object.

Stereo microscopes have two eyepieces and two objectives, which can, however, be combined to form a main objective and thus project a separate image of the object in each eye. This allows objects to be viewed three dimensionally.

In biology and medicine, the object is usually illuminated with transmitted light before the light passes through the objective. This is referred to as transmitted light microscopy. In incident light microscopy, the light is cast from above onto the object and is reflected back into the objective. Incident light microscopy is used for the microscopic examination of opaque objects.

The Köhler illumination makes it possible to illuminate precisely the object area that can be overlooked. This prevents unnecessary stray light from illuminated parts of the object that are not in the field of view.

Dark-field microscopy is used to examine objects that are particularly lacking in contrast such as micro-organisms or red blood cells. The dark-field feature directs the light at an oblique angle through the object, past the objective. The light that is refracted from the object hits the objective where a bright image is then produced against a dark background. This makes it possible to see outlines of objects that are normally mostly transparent.

Phase-contrast microscopy was developed for the microscopy of particularly transparent objects. Transparent objects are, for the most part, optically denser than the surrounding medium and therefore create more resistance to the light. The light is therefore slowed down, which results in a phase shift when it exits the object again. This phase shift is used to create a brightness contrast. This also requires a ring aperture in the condenser and a phase ring in the objective which must be calibrated to each other.

Full Description

Denver Scientic Analytical is one of leading manufacturers of optical and digital microscopes for educational and research institutions, medicine, science, and industry. We offer a range of systems from microscopes for training and routine tasks to advanced imaging systems used to solve some of the most challenging life science and industrial applications. Whether you need a microscope for education, Clinical Laboratory Test, research or industrial applications, you can quickly find specialized microscopes in our selection.

Our microscopes are used for most of the applications in Cancer Research, Cell Culture, Developmental Biology, Drug Discovery, Fluorescence, Live Cell Imaging, Molecular Cell Biology, Neuroscience Imaging, Regenerative Medicine, Pathology and Cytology applications.

We offer outstanding performance, thanks to their natural images and the ability to observe living tissue. Categorized into following categories to meet the requirement of different applications;

  • Educational Microscope
  • Multi-head Teaching Microscope
  • Clinical Microscope
  • Laboratory Microscope
  • Research Microscope
  • Digital Microscopes
  • Fluorescence Microscope
  • Inverted Microscope
  • Stereo Microscope
  • Polarizing Microscope
  • Metallurgical Microscope.

We build microscopes providing the performance and reliability, you can depend on in the long run. The solid construction and weight of the microscopes ensures stability even in harsh environments and the long-lasting precision engineering ensures quality work in the laboratory for many years to come.

Customer satisfaction is our top priority, which is why our staff are more than happy to make special customer requests a reality. All microscopes can be upgraded or converted, thus giving you the best quality at a good price, you can depend on!

Composite light microscopes consist of two lens systems: one eyepiece toward the eye and one toward the object-side objective. The objectives are the most important and valuable part of the microscope, because their quality is critical for determining the overall performance of the microscope. Achromatic objectives consist of compound lenses made of different materials. This makes it possible to correct longitudinal chromatic aberration for two colors, i.e. the varying focal points of several different wavelengths. Apochromatic objectives are corrected for three colors and the deviation of the image location for the intermediate colors is very small. Objectives that are used to correct the curvature of the image field are referred to as plane objectives.

The eyepiece acts as a magnifying glass and magnifies the intermediate image of the objective. Wide-field eyepieces have a larger field-of-vision number than normal eyepieces. The field-of-vision number is the diameter of the object field in mm multiplied by the magnification factor of the objective: an eyepiece with a field-of-vision of 18 mm with a 4x objective yields an object field with 4.5 mm. Plane eyepieces smooth out the image field similar to the plane objectives.

Modern light microscopes are basically categorized as monocular, binocular or stereo microscopes depending on the number of eyepieces and objectives. Monocular microscopes have one eyepiece and one objective and are the simplest type of microscopes. Binocular microscopes have two eyepieces and one objective. They provide for fatigue-free working as microscopes with one eyepiece. However, they do not allow for three-dimensional viewing of the object.

Stereo microscopes have two eyepieces and two objectives, which can, however, be combined to form a main objective and thus project a separate image of the object in each eye. This allows objects to be viewed three dimensionally.

In biology and medicine, the object is usually illuminated with transmitted light before the light passes through the objective. This is referred to as transmitted light microscopy. In incident light microscopy, the light is cast from above onto the object and is reflected back into the objective. Incident light microscopy is used for the microscopic examination of opaque objects.

The Köhler illumination makes it possible to illuminate precisely the object area that can be overlooked. This prevents unnecessary stray light from illuminated parts of the object that are not in the field of view.

Dark-field microscopy is used to examine objects that are particularly lacking in contrast such as micro-organisms or red blood cells. The dark-field feature directs the light at an oblique angle through the object, past the objective. The light that is refracted from the object hits the objective where a bright image is then produced against a dark background. This makes it possible to see outlines of objects that are normally mostly transparent.

Phase-contrast microscopy was developed for the microscopy of particularly transparent objects. Transparent objects are, for the most part, optically denser than the surrounding medium and therefore create more resistance to the light. The light is therefore slowed down, which results in a phase shift when it exits the object again. This phase shift is used to create a brightness contrast. This also requires a ring aperture in the condenser and a phase ring in the objective which must be calibrated to each other.

Loading...

Items 1-12 of 176

Page
per page
Set Descending Direction
View as Grid List

Items 1-12 of 176

Page
per page
Set Descending Direction
View as Grid List